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Abstract

Consider the class of learning schemes which is composed of a sum of losses over every data
point and a regularizer that imposes special structures on the model parameter and controls
the model complexity. A tuning parameter, typically adjusting the amount of regularization, is
necessary for this framework to work well. Finding the optimal tuning is a challenging problem
in high-dimensional regimes where both the sample size and the dimension of the parameter
space are large. We propose two frameworks to obtain a computationally efficient approximation
of the leave-one-out cross validation (LOOCV) risk for nonsmooth losses and regularizers. Our
two frameworks are based on the primal and dual formulations of the aforementioned learning
scheme. We then prove the equivalence of the two approaches under smoothness conditions. This
equivalence enables us to justify the accuracy of both methods under such conditions. Finally we
apply our approaches to several standard problems, including generalized LASSO and support
vector machines, and empirically demonstrate the effectiveness of our results.

1 Introduction

1.1 Motivation

Consider a standard prediction problem in which a dataset {(yj ,xj)}nj=1 ⊂ R× Rp is employed to
learn a model for inferring information about new datapoints that are yet to be observed. One of
the most popular classes of learning schemes, especially in high-dimensional settings, studies the
following optimization problem:

β̂ := arg min
β

n∑
j=1

`(x>j β; yj) + λR(β), (1)

where ` : R2 → R is the loss function, R : Rp → R is the regularizer, and λ is the tuning parameter
that specifies the amount of regularization. With a proper regularizer in (1), we are able to achieve
better bias-variance trade-off and pursue special structures such as sparsity and low rank structure.
However, the performance of such techniques hinges upon the selection of tuning parameters.

The most generally applicable tuning method is cross validation [14]. One common choice is
k-fold cross validation, which however presents potential bias issues in high-dimensional settings
where n is comparable to p. For instance, the phase transition phenomena that happen in such
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Figure 1: Risk estimates of LASSO based on 5-fold CV and ALO proposed in this paper, compared
with the true out-of-sample prediction error (OOS). In this example, 5-fold CV exhibits significant
bias, wherease ALO is unbiased. Here we use n = 1000, p = 800 and iid Gaussian design.

regimes [2] indicate that any data splitting may cause dramatic effects on the solution of (1) (see
Figure 1 for an example). Hence, the risk estimates obtained from k-fold cross validation may not be
reliable. The bias issues of k-fold cross validation may be alleviated by choosing the number of folds
k to be large. For instance, choosing n = k leads to LOOCV, which is unbiased in high-dimensional
problems. However, the computation of LOOCV requires training the model n times, which is very
demanding (if not impossible) for large datasets.

The high computational complexity of LOOCV has motivated researchers to propose computa-
tionally less demanding approximations of the quantity. Early examples offered approximations
for the case R(β) = 1

2‖β‖
2
2 and the loss function being smooth [1, 5, 10, 11]. In [3], the authors

considered such approximations for smooth loss functions and smooth regularizers. In this line
of work, the accuracy of the approximations was either not studied or was only studied in the n
large, p fixed regime. In a recent paper, [12] employed a similar approximation strategy to obtain
approximate leave-one-out formulas for smooth loss functions and smooth regularizers. They show
that under some mild conditions, such approximations are accurate in high-dimensional settings.
Unfortunately, the approximations offered in [12] only cover twice differentiable loss functions and
regularizers. On the other hand, numerous modern regularizers, such as generalized LASSO and
nuclear norm, and also many loss functions are not smooth.

In this paper, we propose two powerful frameworks for calculating an approximate leave-one-out
estimator (ALO) of the LOOCV risk that are capable of offering accurate parameter tuning even for
non-differentiable losses and regularizers. Our first approach is based on the smoothing and quadratic
approximation of the primal problem (1). The second approach is based on the approximation of
the dual of (1). While the two approaches consider different approximations that happen in different
domains, we will show that when both ` and r are twice differentiable, the two frameworks produce
the same ALO formulas, which are also the same as the formulas proposed in [12].

We use our platforms to obtain concise formulas for several popular examples including generalized
LASSO and support vector machine (SVM). As will be clear from our examples, despite of the
equivalence of the two frameworks for smooth loss functions and regularizers, the technical aspects
of the derivations involved for obtaining ALO formulas have major variations in different examples.
Finally, we present simulations to confirm the accuracy of our formulas on various important machine
learning models. Code is available at https://github.com/wendazhou/alocv-package.

1.2 Notation

Lowercase and uppercase bold letters denote vectors and matrices, respectively. For subsets
A ⊂ {1, 2, . . . , n} and B ⊂ {1, 2, . . . , p} of indices and a matrix X, let XA,· and X·,B denote the
submatrices that include only rows of X in A, and columns of X in B respectively. Let {ai}i∈S
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denote the vector whose components are ai for i ∈ S. We may omit S, in which case we consider all
indices valid in the context. For a function f : R→ R, let ḟ , f̈ denote its 1st and 2nd derivatives.
For a vector a, we use diag[a] to denote a diagonal matrix A with Aii = ai. Finally, let ∇R and
∇2R denote the gradient and Hessian of a function R : Rp → R.

2 Preliminaries

2.1 Problem Description

In this paper, we study the statistical learning models in form (1). For each value of λ, we evaluate
the following LOOCV risk estimate with respect to some error function d:

looλ :=
1

n

n∑
i=1

d(yi,x
>
i β̂

/i), (2)

where β̂/i is the solution of the leave-i-out problem

β̂/i := arg min
β

∑
j 6=i

`(x>j β; yj) + λR(β). (3)

Calculating (3) requires training the model n times, which may be time-consuming in high-
dimensions. As an alternative, we propose an estimator β̃/i to approximate β̂/i based on the
full-data estimator β̂ to reduce the computational complexity. We consider two frameworks for
obtaining β̃/i, and denote the corresponding risk estimate by:

aloλ :=
1

n

n∑
i=1

d(yi,x
>
i β̃

/i). (4)

The estimates we obtain will be called approximate leave-one-out (ALO) throughout the paper.

2.2 Primal and Dual Correspondence

The objective function of penalized regression problem with loss ` and regularizer R is given by:

P (β) :=
n∑
j=1

`(x>j β; yj) +R(β). (5)

Here and subsequently, we absorb the value of λ into R to simplify the notation. We also consider
the Lagrangian dual problem, which can be written in the form:

min
θ∈Rn

D(θ) :=

n∑
j=1

`∗(−θj ; yj) +R∗(X>θ), (6)

where `∗ and R∗ denote the Fenchel conjugates 1 of ` and R respectively. It is known that under
mild conditions, (5) and (6) are equivalent [4]. In this case, we have the primal-dual correspondence
relating the primal optimal β̂ and the dual optimal θ̂:

β̂ ∈ ∂R∗(X>θ̂), X>θ̂ ∈ ∂R(β̂),

x>j β̂ ∈ ∂`∗(−θ̂j ; yj), −θ̂j ∈ ∂`(x>j β̂; yj),
(7)

where ∂f denotes the set of subgradients of a function f . Below we will use both primal and dual
perspectives for approximating looλ.

1The Fenchel conjugate f∗ of a function f is defined as f∗(x) := supy{〈x, y〉 − f(y)}.
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3 Approximation in the Primal and Dual Domain

3.1 Approximation in the Dual Domain

We illustrate our dual method in deriving an ALO formula through a simple example of the standard
LASSO. The LASSO estimator, first proposed in [15], can be formulated as the penalized regression
framework in (5) by setting `(µ; y) = (µ− y)2/2, and R(β) = λ‖β‖1.

We recall the general formulation of the dual for penalized regression problems (6), and note
that in the case of the LASSO we have:

`∗(θi; yi) =
1

2
(θi − yi)2, R∗(β) =

{
0 if ‖β‖∞ ≤ λ,
+∞ otherwise.

In particular, we note that the solution of the dual problem (6) can be obtained as:

θ̂ = Π∆X
(y), with ∆X = {θ ∈ Rn : ‖X>θ‖∞ ≤ λ}. (8)

where Π∆X
denotes the projection onto the polytope ∆X . Let us now consider the leave-i-out

problem. Unfortunately, the dimension of the dual problem is reduced by 1 for the leave-i-out
problem, making it difficult to leverage the information from the full-data solution to approximate
the leave-i-out solution. We augment the leave-i-out problem with a virtual ith observation that
does not affect the result of the optimization, but restores the dimensionality of the problem.

More precisely, let ya be the same as y, except that its ith coordinate is replaced by ŷ
/i
i = x>i β̂

/i,

the leave-i-out predicted value. We note that the leave-i-out solution β̂/i is also the solution for the
following augmented problem:

min
β∈Rp

∑n
j=1`(x

>
j β; ya,j) +R(β). (9)

Let θ̂/i be the corresponding dual solution of (9). Then, by (8), we know that θ̂/i = Π∆X
(ya).

Additionally, the primal-dual correspondence (7) gives that θ̂/i = ya −Xβ̂/i, which is the residual

in the augmented problem, and hence that θ̂
/i
i = 0. These two features allow us to characterize the

leave-i-out predicted value ŷ
/i
i :

e>i Π∆X

(
y − (yi − ŷ/ii )ei

)
= 0 (10)

where ei denotes the ith standard vector. Solving exactly for the above equation is in general an
expensive procedure that is computationally comparable to fitting the model. However, we may
attempt to obtain an approximate solution of (10) by linearizing the projection operator at the full
data solution θ̂, or equivalently performing a single Newton step to solve the leave-i-out problem

from the full data solution. The approximate leave-i-out fitted value ỹ
/i
i is thus given by:

ỹ
/i
i = yi −

θ̂i
Jii
, (11)

where J denotes the Jacobian of the projection operator Π∆X
at the full data problem y. Note

that ∆X is a polytope, and thus the projection onto ∆X is almost everywhere locally affine [18].
Furthermore, it is straightforward to calculate the Jacobian of Π∆X

. Let E = {j : |X>j θ̂| = λ} be

the equicorrelation set (where Xj denotes the jth column of X). Then the projection at the full
data problem y is locally given by a projection onto the orthogonal complement of the span of
X·,E , thus yielding J = I −X·,E(X>·,EX·,E)−1X>·,E . We can then obtain ỹ/i by plugging J in (11).

Finally, by replacing x>i β̃
/i with ỹ

/i
i in (4) we obtain an estimate of the risk.

This approach can be extended to general loss functions and regularizers. For more information,
refer to Section 3 of [20].
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3.2 Approximation in the Primal Domain

In this section, we illustrate the primal approach for deriving ALO. We focus on the piecewise
smooth loss functions and twice differentiable regularizers. However, the same procedure can be
used for nonsmooth regularizers as well. We refer the readers to [20] for more details.

To start with, we describe the primal approach for smooth losses and regularizers. This will
serve as a building block for resolving nonsmooth cases. Now to obtain looλ we need to solve

β̂/i := arg min
β

∑
j 6=i`(x

>
j β; yj) +R(β). (12)

Assuming β̂/i is close to β̂, we can take a Newton step from β̂ towards β̂/i to obtain its
approximation β̃/i as:

β̃/i = β̂ +
[∑

j 6=ixjx
>
j

῭(x>j β̂; yj) +∇2R(β̂)
]−1
xi ˙̀(x>i β̂; yi). (13)

We have by the matrix inversion lemma [7]:

x>i β̃
/i = x>i β̂ +

Hii
˙̀(x>i β̂; yi)

1−Hii
῭(x>i β̂; yi)

, H = X[X>diag[{῭(x>i β̂; yi)}i]X +∇2R(β̂)]−1X>. (14)

This is the formula reported in [12]. By calculating β̂ and H in advance, we can cheaply
approximate the leave-i-out prediction for all i and efficiently evaluate the LOOCV risk. However
twice differentiability of both the loss and the regularizer is necessary in a neighborhood of β̂ to
use the above strategy. This assumption is violated for many machine learning models including
LASSO, robust regression [8], and SVM. Next we introduce a smoothing technique which lifts the
scope of the above primal approach to nondifferentiable losses and regularizers. We first clarify our
assumptions on the loss function.

Definition 3.1. A singular point of a function is called qth order, if at this point the function is q
times differentiable, but its (q + 1)th order derivative does not exist.

Below we assume the loss ` is piecewise twice differentiable with k zero-order singularities
v1, . . . , vk ∈ R. The existence of singularities prohibits us from directly applying strategies in (13)
and (14), where twice differentiability of ` and R is necessary. A natural solution is to first smooth
the loss `, then apply the above framework for smooth objectives to the smoothed version and
finally reduce the smoothness to recover the ALO formula for the original nonsmooth problem.

As the first step, consider the following smoothing idea:

`h(µ; y) =:
1

h

∫
`(u; y)φ((µ− u)/h)du,

where h > 0 is fixed and φ is a smooth symmetric function which verifies: (i) Normalization:∫
φ(w)dw = 1, φ(w) ≥ 0, φ(0) > 0; (ii) Compact support : supp(φ) = [−C,C] for some C > 0.

Now plug in this smooth version `h into (12) to obtain the following formula from (13):

β̃
/i
h := β̂h +

[∑
j 6=ixjx

>
j

῭
h(x>j β̂h; yj) +∇2R(β̂h)

]−1
xi ˙̀

h(x>i β̂h; yi). (15)

where β̂h is the minimizer on the full data from loss `h and R. β̃
/i
h is a good approximation to

the leave-i-out estimator β̂
/i
h based on smoothed loss `h. Setting h→ 0, we have `h(µ, y) converge

to `(µ, y) uniformly in the region of interest (see Appendix of [20] for the proof), implying that
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limh→0 β̃
/i
h serves as a good estimator of limh→0 β̂

/i
h , which is close to the true leave-i-out β̂/i.

Equation (15) can be simplified in the limit h→ 0. We define the sets of indices V and S for the
samples at singularities and smooth parts respectively:

V := {j : x>j β̂ = vt for some t ∈ {1, . . . , k}}, S := {1, . . . , n} \ V.

We characterize the limit of x>i β̃
/i
h below.

Theorem 3.1. Under some mild conditions, as h→ 0, we have x>i β̃
/i
h → x>i β̂ + aig`,i whereai = Wii

1−Wii
῭(x>i β̂;yi)

, g`,i = ˙̀(x>i β̂; yi) if i ∈ S,

ai = 1
[(XV ·Y −1X>V ·)

−1]ii
, g`,i =

[
(XV,·X

>
V,·)
−1XV,·[∇R(β̂)−

∑
j∈Sxj

˙̀(x>j β̂; yj)]
]
i

if i ∈ V,

with

Y =∇2R(β̂) +X>S·diag[{῭(x>j β̂)}j∈S ]XS·,

Wii =x>i Y
−1xi − x>i Y −1X>V,·(XV,·Y

−1X>V,·)
−1XV,·Y

−1xi.

We can obtain the ALO estimate of prediction error by plugging x>i β̂ + aig`,i instead of x>i β̃
/i

in (4). The conditions and proof of Theorem 3.1 can be found in Appendix of [20].

3.3 Equivalence Between Primal and Dual Methods

Although the primal and dual methods may be harder or easier to carry out depending on the
specific problem at hand, one may wonder if they always obtain the same result. It turns out that
there exists a unifying view for both methods, stated as below.

Suppose both ` and R are smooth. As both the primal and dual methods are based on a
first-order approximation strategy, they are exact solutions to a surrogate quadratic leave-i-out
problem. For the primal method, we have the following surrogate primal problem:

min
β/i

∑
j 6=i

˜̀(x>j β
/i; yj) + R̃(β/i). (16)

where ˜̀ and R̃ are the quadratic expansions of ` and R at β̂. The way we obtain β̃/i in (13) indicates
that the primal formula in (13) (14) are the exact leave-i-out solution of (16).

On the other hand, we may consider the surrogate dual problem, by replacing `∗ and R∗ with
their quadratic expansion at full data dual solution θ̂ in the dual problem (6). It turns out that the
surrogate dual problem is equivalent to the dual of the surrogate primal problem (16). In addition,
the dual method described in Section 3 solves the surrogate dual problem. Therefore the primal and
dual frameworks we laid out in Sections 3 lead to exactly the same ALO formulas. We again refer
our reader to the full version of this paper [20] for more details about the proofs and the discussions
of the nonsmooth situation.

4 Comparison of ALO and Infinitesimal Jackknife

Substantial effort has been devoted to the problem of parameter tuning in the past five decades.
However, the incapability of the classical methods in addressing this problem in high-dimensional
and big-data regimes has brought this problem back to the forefront of research [12, 6]. While due
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Figure 2: Risk estimates of different approximations for varying p (n = 2000, k = 100). Here, “alo”
denotes the ALO estimator, “ij” the infinitesimal jacknife, and “oos” the true out-of-sample risk2.

to space limitation we cannot mention all the recent proposals, we would like to compare our work
with the most relevant one which is the infinitesimal jacknife (IJ) proposed in [6, 13]. We refer the
interested reader to the full version of this paper [20] for more information on the other proposals.

IJ may be adapted to produce different approximate leave-one-out estimates of risk. For instance,
in the case of LASSO, IJ yields 1

n

∑n
i=1(r̂IJ

i )2 as an approximation of LOOCV[13], where

r̂IJ
i = (1 +Hii)r̂i, (17)

r̂i = yi − x>i β̂, and H = X·,E(X>·,EX·,E)−1X>·,E , with E denoting the equi-correlation set. In

contrast, we have (see [20, Theorem 4.2]) alo = 1
n

∑n
i=1(r̂ALO

i )2, where r̂ALO
i = r̂i

1−Hii
.

Note that when Hii is small (close to zero), both estimates are essentially equivalent. However,
in high dimensional models, we expect to have Hii = O(1) (in the case of LASSO,

∑
iHii = |E|), in

which case the gap can be significant. In particular, when using the risk estimate for hyperparameter
tuning, simulations show that IJ tends to select no regularization (λ = 0), whereas ALO can often
produce a reasonable value (see Figure 2 and [13, Figure 5]).

5 Applications

5.1 Generalized LASSO

The generalized LASSO [17] is a generalization of the LASSO problem which captures many
applications such as the fused LASSO [16], `1 trend filtering [9] and wavelet smoothing in a unified
framework. The generalized LASSO problem solves the following penalized regression problem:

min
β

1

2

n∑
j=1

(yj − x>j β)2 + λ‖Dβ‖1. (18)

where the regularizer is parameterized by a fixed matrix D ∈ Rm×p which captures the desired
structure in the data. We note that the regularizer is a semi-norm. Hence we can formulate the
dual problem as a projection. In fact, a dual formulation of (18) can be obtained as:

min
θ,u

1

2
‖θ − y‖22 s.t. ‖u‖∞ ≤ λ and X>θ = D>u.

2The out-of-sample risk is the risk of the estimator under the data-generating distribution, which is known in the
present case of a simulation.
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The dual optimal solution satisfies θ̂ = Π∆X
(y), where ∆X is the polytope given by:

∆X = {θ ∈ Rn : ∃u, ‖u‖∞ ≤ λ and X>θ = D>u}.

The projection onto the polytope C = {D>u : ‖u‖∞ ≤ λ} is given in [17] as locally being the
projection onto the affine space orthogonal to the nullspace of D·,−E , where E = {i : |ûi| = λ} and
−E = {1, . . . , p} \ E. Since ∆X = [X>]−1C is the inverse image of C under the linear map given
by X>, the projection onto ∆X is given locally by the projection onto the affine space normal to
the space spanned by the columns of [X>]+nullD·,−E , provided X has full column rank. Here,
[X>]+ denotes the Moore-Penrose pseudoinverse of X>. To obtain a spanning set of this space, we
consider A = XB, where B is a set of vectors spanning the nullspace of D·,−E . This allows us to
compute H = AA+, the projection onto the normal space required to compute the ALO.

5.2 Kernel SVM

We present a derivation for the kernel formulation of SVM for classification. Let K ∈ Rn×n denote
the kernel matrix (assumed positive-definite), and let y ∈ {−1, 1}n denote the binary labels. The
objective of the SVM (with no intercept) may be written as [19]:

min
γ

n∑
j=1

(
1− yjhj(γ, ρ)

)
+

+
λ

2
γ>Kγ, where hj(γ) = K>·,jγ

As this objective is a combination of a smooth regularizer and a separable loss, we may apply

Theorem 3.1 to obtain the approximation: ỹ
/i
i = ŷi + aigi, where ai and gi are defined as (here �

denotes component-wise multiplication):

ai =

{
λ−1K>·,i

[
K−1 −K−1K·,V (K>·,VK

−1K·,V )−1K>·,VK
−1
]
K·,i if i ∈ S,(

λ
[
(K>·,VK

−1K·,V )−1
]
ii

)−1
if i ∈ V,

gS = −yS � I{ySK>·,Sγ̂ < 1}, gV = (K>·,VK·,V )−1K>·,V

{∑
j∈S:yj ŷj<1yjK·,j − λK(y � γ̂)

}
.

6 Numerical Experiments

We illustrate the performance of ALO through three experiments. The first two compare the ALO
risk estimate with that of LOOCV. The third experiment compares the computational complexity
of ALO with that of LOOCV. For the first experiment (Figure 3a), we run ALO and LOOCV for
the two models studied in Section 5 (using fused LASSO as a special case of generalized LASSO)
and compare their risk estimates under the settings n > p and n < p respectively. For the details of
these experiments, the reader may refer to the full version of the paper [20].

For the second experiment (Figure 3b), we consider the risk estimates for LASSO from ALO
and LOOCV under settings with model mis-specification, heavy-tail noise and correlated design.
For all three cases, ALO approximates LOOCV well.

In general, we observe that the estimates given by ALO are close to LOOCV, although the
performance may deteriorate for very small values of λ, as is clear in the fused-LASSO (n < p)
example. These values of λ correspond to “dense” solutions, and are far from the optimal choice.
Hence, such inaccuracies do not harm the parameter tuning algorithm.

Our last experiment compares the computational complexity of ALO with that of LOOCV. In
Table 1, we provide the timing of LASSO for different values of n and p. The time required by
ALO, which involves a single fit and a matrix inversion (in the construction of H matrix), is in all

8



Table 1: Timing (in sec) of one single fit, ALO and LOOCV.

(n, p) (800, 200) (800, 400) (800, 1600) (200, 800) (400, 800) (1600, 800)

single fit 0.035± 0.001 0.13± 0.01 0.60± 0.01 0.055± 0.002 0.19± 0.01 0.76± 0.02
ALO 0.060± 0.001 0.21± 0.01 0.89± 0.01 0.065± 0.001 0.24± 0.01 1.20± 0.01
LOOCV 27.52± 0.03 107.4± 0.5 479± 2 11.44± 0.049 74.7± 0.5 1249± 3

experiments no more than twice that of a single fit. We refer the reader to [20] for the details of all
the above experiments.
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Figure 3: Risk estimates from ALO versus LOOCV. The x-axis is the value of λ on log-scale, the
y-axis is the risk estimate. In part (a), the comparison is based on SVM and fused LASSO. In part
(b), we consider the risk estimates of LASSO under model mis-specification, heavy-tailed noise and
correlated design scenarios.

7 Discussion

ALO offers a highly efficient approach for parameter tuning and risk estimation for a large class
of statistical machine learning models. We focus on nonsmooth models and propose two general
frameworks for calculating ALO. One is from the primal perspective, the other from the dual.

By approximating LOOCV, ALO inherits desirable properties of LOOCV in high-dimensional
settings where n and p are comparable. In particular, ALO can overcome the bias issues that k-fold
cross validation displays in these settings.
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