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1 Introduction

Generally speaking, the approximate message passing (AMP) algorithm is an efficient iterative approach for
solving the linear inverse problems (LIP). We begin the introduction by reviewing the latter: consider a
linear model

y = Xβ + ε,

where y ∈ Rn, X ∈ Rn×p are known, and ε ∈ Rn is a vector of random noises. The goal of LIP is to recover
β ∈ Rp by optimizing certain criteria. Linear regression, our favorite linear model, is an example of the
unconstrained LIP. The objective of linear regression is

minimize
β

1

2
‖y −Xβ‖22 (1)

Assuming X is of full-rank, a closed form solution can be easily derived: β̂ = (X>X)−1X>y. In practice,
however, we often have some prior knowledge or assumptions on the structure of β. A popular way to
incorporate these structures is through the regularized least-squares:

minimize
β

min
β

1

2
‖y −Xβ‖22 +R(β), (2)

where R(β) is some regularization function. For example, when R(β) = λ‖β‖1 the problem is known as
LASSO, and more generally, if R(β) = λ‖Dβ‖1 for certain penalty matrix D ∈ Rm×p, the problem is known
as the generalized LASSO [cite], and has useful applications such as fused LASSO [cite], trend filtering [cite],
and wavelet smoothing [cite] as special cases.

Next we turn our eyes to the problem of compressed sensing (CS). This is a very important type of LIP
that instigated the recent interest in AMP. The object of CS is

minimize
β

‖β‖0,

subject to Xβ = y,
(3)

where we define ‖x‖0 := #{i | xi = 0} (not really a norm) and usually assume n� p. Of course, the `0-norm
is computationally intractable so in practice it is surrogated by the so-called basis pursuit :

minimize
β

‖β‖1,

subject to Xβ = y.
(4)

This is a convex optimization problem and can be reformulated as a linear program (LP): let X∗ :=(
X −X

)
. Then the solution z∗ of

minimize
z

1>z,

subject to X∗z = y,

zi > 0 i = 1, . . . , 2p

(5)
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is a vector of length 2p and can be partitioned in half as z∗ =
(
u∗ v∗

)
. It can be shown then x∗ = u∗−v∗

solves problem (4). While linear program solvers are readily available and very efficient, for some large-scale
problem the performance can still be less than satisfactory. For example, in image compression problem
[GP19], β represents a vectorized image. Hence for a image of size 1000 × 1000, the resulting LP can have
2 millions of variables. This is where the AMP come into play.

2 Algorithm

As stated in the beginning, AMP is an iterative algorithm, its update scheme [DMM09] is

βt+1 = ηt
(
βt +X>zt

)
,

zt = y −Xβt +
zt−1

n

p∑
j=1

η′t
(
X>·,jz

t−1 + βt−1
j

)
,

where we set β0 = 0, and X>·,j denotes the j-th row of X>. Here ηt(x) are some component-wise scalar
threshold functions and η′t(x) are their derivatives. At each step, ηt denoises the effective observation
βt +X>zt. The correction term zt, also known as the modified residual, ensures that for large enough p,
βt+X>zt is close to the solution β plus a Gaussian noise. It is derived from the theory of belief propagation
in graphical models.

Rigorous asymptotic analysis [BM11] has been given under mild assumptions: assumingXi,j ∼ N(0, 1/n)
and ε ∼ N(0, σ2) i.i.d. If Z ∼ N(0, 1), and X is some random variable such that the empirical distribution
of the entries of β coincides with X. Then under some further assumption on moments of X, we have

lim
n→∞

n∑
i=1

ψ(βt+1
i ,βi) = E[ψ(ηt(X + τtZ), X)]

almost surely, where ψ : R2 → R is any pseudo-Lipschitz function of certain order and τt can be computed
via state evolution. In term of MSE ψ(x, y) = (x− y)2, this implies

lim
n→∞

1

n
‖βt − β‖2 = (τ2t − σ2)δ

almost surely, where δ = n/p is the sampling ratio.

2.1 TODO: Belief Propagation, ISTA, State Evolution of MSE

2



References

[BM11] M. Bayati and A. Montanari. “The Dynamics of Message Passing on Dense Graphs, with Ap-
plications to Compressed Sensing”. In: IEEE Transactions on Information Theory 57.2 (Feb.
2011), pp. 764–785. issn: 1557-9654. doi: 10.1109/TIT.2010.2094817.
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Workshop. 2018. url: https://krzakala.github.io/cargese.io/AMP_Tutorial_18.pdf.

[Rus18] Cynthia Rush. “Finite Sample Analysis of AMP”. Institut d’Études Scientifiques de Cargèse
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