Note on Approximate Message Passing

Peng Xu

Draft: January 5, 2020

1 Introduction

Generally speaking, the approximate message passing (AMP) algorithm is an efficient iterative approach for solving the linear inverse problems (LIP). We begin the introduction by reviewing the latter: consider a linear model

$$y = X\beta + \varepsilon$$
,

where $\boldsymbol{y} \in \mathbb{R}^n$, $\boldsymbol{X} \in \mathbb{R}^{n \times p}$ are known, and $\boldsymbol{\varepsilon} \in \mathbb{R}^n$ is a vector of random noises. The goal of LIP is to recover $\boldsymbol{\beta} \in \mathbb{R}^p$ by optimizing certain criteria. Linear regression, our favorite linear model, is an example of the unconstrained LIP. The objective of linear regression is

$$\underset{\beta}{\text{minimize}} \quad \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_{2}^{2} \tag{1}$$

Assuming X is of full-rank, a closed form solution can be easily derived: $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}y$. In practice, however, we often have some prior knowledge or assumptions on the structure of β . A popular way to incorporate these structures is through the regularized least-squares:

minimize
$$\min_{\beta} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta} \|_{2}^{2} + R(\boldsymbol{\beta}), \tag{2}$$

where $R(\boldsymbol{\beta})$ is some regularization function. For example, when $R(\boldsymbol{\beta}) = \lambda \|\boldsymbol{\beta}\|_1$ the problem is known as LASSO, and more generally, if $R(\boldsymbol{\beta}) = \lambda \|\boldsymbol{D}\boldsymbol{\beta}\|_1$ for certain penalty matrix $\boldsymbol{D} \in \mathbb{R}^{m \times p}$, the problem is known as the generalized LASSO [cite], and has useful applications such as fused LASSO [cite], trend filtering [cite], and wavelet smoothing [cite] as special cases.

Next we turn our eyes to the problem of *compressed sensing* (CS). This is a very important type of LIP that instigated the recent interest in AMP. The object of CS is

minimize
$$\|\boldsymbol{\beta}\|_0$$
, $\boldsymbol{\beta}$ subject to $X\boldsymbol{\beta} = \boldsymbol{y}$, (3)

where we define $\|x\|_0 := \#\{i \mid x_i = 0\}$ (not really a norm) and usually assume $n \ll p$. Of course, the ℓ_0 -norm is computationally intractable so in practice it is surrogated by the so-called *basis pursuit*:

minimize
$$\|\boldsymbol{\beta}\|_1$$
, $\boldsymbol{\beta}$ subject to $\boldsymbol{X}\boldsymbol{\beta} = \boldsymbol{y}$. (4)

This is a convex optimization problem and can be reformulated as a linear program (LP): let $X^* := (X - X)$. Then the solution z^* of

minimize
$$\mathbf{1}^{\top} \boldsymbol{z}$$
,
subject to $\boldsymbol{X}^* \boldsymbol{z} = \boldsymbol{y}$, (5)
 $z_i > 0 \quad i = 1, \dots, 2p$

is a vector of length 2p and can be partitioned in half as $\mathbf{z}^* = (\mathbf{u}^* \quad \mathbf{v}^*)$. It can be shown then $\mathbf{x}^* = \mathbf{u}^* - \mathbf{v}^*$ solves problem (4). While linear program solvers are readily available and very efficient, for some large-scale problem the performance can still be less than satisfactory. For example, in image compression problem [GP19], $\boldsymbol{\beta}$ represents a vectorized image. Hence for a image of size 1000×1000 , the resulting LP can have 2 millions of variables. This is where the AMP come into play.

2 Algorithm

As stated in the beginning, AMP is an iterative algorithm, its update scheme [DMM09] is

$$egin{aligned} oldsymbol{eta}^{t+1} &= \eta_t ig(oldsymbol{eta}^t + oldsymbol{X}^ op oldsymbol{z}^t ig), \ oldsymbol{z}^t &= oldsymbol{y} - oldsymbol{X} oldsymbol{eta}^t + rac{oldsymbol{z}^{t-1}}{n} \sum_{i=1}^p \eta_t' ig(oldsymbol{X}_{\cdot,j}^ op oldsymbol{z}^{t-1} + oldsymbol{eta}_j^{t-1} ig), \end{aligned}$$

where we set $\boldsymbol{\beta}^0 = \mathbf{0}$, and $\boldsymbol{X}_{:,j}^{\top}$ denotes the j-th row of \boldsymbol{X}^{\top} . Here $\eta_t(x)$ are some component-wise scalar threshold functions and $\eta_t'(x)$ are their derivatives. At each step, η_t denoises the *effective observation* $\boldsymbol{\beta}^t + \boldsymbol{X}^{\top} \boldsymbol{z}^t$. The correction term \boldsymbol{z}^t , also known as the *modified residual*, ensures that for large enough p, $\boldsymbol{\beta}^t + \boldsymbol{X}^{\top} \boldsymbol{z}^t$ is close to the solution $\boldsymbol{\beta}$ plus a Gaussian noise. It is derived from the theory of belief propagation in graphical models.

Rigorous asymptotic analysis [BM11] has been given under mild assumptions: assuming $X_{i,j} \sim N(0, 1/n)$ and $\varepsilon \sim N(0, \sigma^2)$ i.i.d. If $Z \sim N(0, 1)$, and X is some random variable such that the empirical distribution of the entries of β coincides with X. Then under some further assumption on moments of X, we have

$$\lim_{n\to\infty}\sum_{i=1}^n \psi(\boldsymbol{\beta}_i^{t+1}, \boldsymbol{\beta}_i) = \mathrm{E}[\psi(\eta_t(X+\tau_t Z), X)]$$

almost surely, where $\psi \colon \mathbb{R}^2 \to \mathbb{R}$ is any pseudo-Lipschitz function of certain order and τ_t can be computed via state evolution. In term of MSE $\psi(x,y) = (x-y)^2$, this implies

$$\lim_{n \to \infty} \frac{1}{n} \|\boldsymbol{\beta}^t - \boldsymbol{\beta}\|^2 = (\tau_t^2 - \sigma^2)\delta$$

almost surely, where $\delta = n/p$ is the sampling ratio.

2.1 TODO: Belief Propagation, ISTA, State Evolution of MSE

References

- [BM11] M. Bayati and A. Montanari. "The Dynamics of Message Passing on Dense Graphs, with Applications to Compressed Sensing". In: *IEEE Transactions on Information Theory* 57.2 (Feb. 2011), pp. 764–785. ISSN: 1557-9654. DOI: 10.1109/TIT.2010.2094817.
- [BMN19] Raphaël Berthier, Andrea Montanari, and Phan-Minh Nguyen. "State evolution for approximate message passing with non-separable functions". In: Information and Inference: A Journal of the IMA (Jan. 2019). iay021. ISSN: 2049-8772. DOI: 10.1093/imaiai/iay021. eprint: http://oup.prod.sis.lan/imaiai/advance-article-pdf/doi/10.1093/imaiai/iay021/27503802/iay021.pdf. URL: https://doi.org/10.1093/imaiai/iay021.
- [DMM09] David L. Donoho, Arian Maleki, and Andrea Montanari. "Message-passing algorithms for compressed sensing". In: *Proceedings of the National Academy of Sciences* 106.45 (2009), pp. 18914–18919. ISSN: 0027-8424. DOI: 10.1073/pnas.0909892106. eprint: https://www.pnas.org/content/106/45/18914.full.pdf. URL: https://www.pnas.org/content/106/45/18914.
- [Don06] David L. Donoho. "Compressed sensing". In: *IEEE Transactions on Information Theory* 52.4 (Apr. 2006), pp. 1289–1306. ISSN: 1557-9654. DOI: 10.1109/TIT.2006.871582.
- [GP19] S. K. Gunasheela and H. S. Prasantha. "Compressed Sensing for Image Compression: Survey of Algorithms". In: *Emerging Research in Computing, Information, Communication and Applications*. Ed. by N. R. Shetty et al. Singapore: Springer Singapore, 2019, pp. 507–517. ISBN: 978-981-13-6001-5. DOI: 10.1007/978-981-13-6001-5_42.
- [Mal18] Arian Maleki. "Message passing and approximate message passing". Columbia STAT GR6104
 Computational Statistics. 2018. URL: http://www.stat.columbia.edu/~liam/teaching/compstat-spr19/AMPlecture.pdf.
- [RFS18] Sundeep Rangan, Alyson K. Fletcher, and Phil Schniter. "Approximate Message Passing Tutorial". Institut d'Études Scientifiques de Cargèse Statistical Physics And Machine Learning Workshop. 2018. URL: https://krzakala.github.io/cargese.io/AMP_Tutorial_18.pdf.
- [Rus18] Cynthia Rush. "Finite Sample Analysis of AMP". Institut d'Études Scientifiques de Cargèse Statistical Physics And Machine Learning Workshop. 2018. URL: https://krzakala.github.io/cargese.io/Cynthia.pdf.
- [Wai08] Martin J. Wainwright. "Message passing and approximate message passing". 2008 International Conference on Machine Learning Tutorial. 2008. URL: https://people.eecs.berkeley.edu/~wainwrig/icml08/tutorial_icml08.html.