Generative quantum machine learning via denoising diffusion probabilistic models

Published:

Recommended citation: Bingzhi Zhang, Peng Xu, Xiaohui Chen, Quntao Zhuang. (2023). Generative quantum machine learning via denoising diffusion probabilistic models.

[Preprint]

Abstract

Deep generative models are key-enabling technology to computer vision, text generation and large language models. Denoising diffusion probabilistic models (DDPMs) have recently gained much attention due to their ability to generate diverse and high-quality samples in many computer vision tasks, as well as to incorporate flexible model architectures and relatively simple training scheme. Quantum generative models, empowered by entanglement and superposition, have brought new insight to learning classical and quantum data. Inspired by the classical counterpart, we propose the quantum denoising diffusion probabilistic models (QuDDPM) to enable efficiently trainable generative learning of quantum data. QuDDPM adopts sufficient layers of circuits to guarantee expressivity, while introduces multiple intermediate training tasks as interpolation between the target distribution and noise to avoid barren plateau and guarantee efficient training. We demonstrate QuDDPM’s capability in learning correlated quantum noise model and learning topological structure of nontrivial distribution of quantum data.